EP 2 998 895 A1

(1 9) Europdisches

Patentamt

European
Patent Office
Office européen

des brevets

(11) EP 2 998 895 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
23.03.2016 Bulletin 2016/12

(21) Application number: 14003279.8

(22) Date of filing: 22.09.2014

(51) IntCl.:
GO6F 21/12(2073.09

(84) Designated Contracting States:
AL AT BE BG CH CY CZDE DK EE ES FI FR GB
GRHRHUIEISITLILT LULV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(71) Applicant: Denuvo GmbH
5020 Salzburg (AT)

(72) Inventors:
¢ Gabler, Christopher
5020 Salzburg (AT)
¢ Yates, Robert
5411 Oberalm (AT)

¢ Rauch, Leo
5020 Salzburg (AT)
* Moninger, Matthias
5020 Salzburg (AT)

(74) Representative: Réthinger, Rainer
Wuesthoff & Wuesthoff
Patentanwélte PartG mbB
Schweigerstrasse 2
81541 Miinchen (DE)

Remarks:
Amended claims in accordance with Rule 137(2)
EPC.

(54) Technique for enabling nominal flow of an executable file

(67) A technique for enabling nominal flow of an ex-
ecutable file on a client is described. The executable file
comprises executable code lacking at least one nominal
constant, wherein only the nominal constant enables the
nominal flow of the executable file and wherein a server
has access to the at least one nominal constant. In a
method aspect performed by the client, the method com-
prises retrieving hardware information of the client,
wherein the hardware information is at least substantially
unique. The method further comprises transmitting one
of the hardware information and information derived
therefrom to a server and, in turn, receiving at least one
constant that has been transformed based on one of the

Client 2001

hardware information and the information derived there-
from. The clientthen performs, using one of the hardware
information and the information derived therefrom, an in-
verse transformation on the atleast one transformed con-
stant to recover the nominal constant. A server-side
method aspect comprises receiving, from the client, one
of the substantially unique hardware information and the
information derived therefrom, transforming the at least
one nominal constant using one of the hardware infor-
mation and the information derived therefrom, and trans-
mitting, to the client, the at least one transformed con-
stant.

Server 2002 Protection engine 2003

D1k

B0E|E0E

Process 1 51-0b Providii
 code portion (byte code] e.g. for v |
510 Authenticating the client at the server using login 520
information and credentials i

S1-1 Retrieving
HW info [client]

52-1 Receiving
HW info + 21 constant + Hash(.exe)

' -1a ng
§ Hash(HW info)

51-2 Transmitting
HW info + 21 constant + Hash(.exe)

S1-3 Receiving
21 transformed constant

522 Transforming

21 constant [HW info]
52-23 Generating
rand number [Hash(.exe)]
52-2b Randomly combining
21 constant with HW info

21 constant - HW info
21 constant + HW info

21 constant XOR HW info

52-3 Transmitting
21 transformed constant

Printed by Jouve, 75001 PARIS (FR)

1 EP 2 998 895 A1 2

Description
Technical Field

[0001] The present disclosure generally relates to en-
abling nominal flow of an executable file. The disclosure
may be practiced in connection with digital rights man-
agement systems, for example for protecting an execut-
able file from being copied without proper authorization.
The technique of the present disclosure may be embod-
ied in methods, computer programs and/or apparatuses.

Background

[0002] Current prior art copy protection systems often
check hardware components of a computer on which an
executable file is to be executed to identify whether the
executable file has actually been activated for that com-
puter. During an exemplary activation process, hardware
information of the computer for which the executable file
is to be activated (also called clientin the present context)
is sent to an activation server. The activation server re-
turns to the client a license that embeds the hardware
information in any form (e.g., encrypted).

[0003] Thelicense can be validated, for example upon
start of the executable file, and hardware information of
the currently used client is compared to the information
stored in the license file. The hardware information check
has usually a true/false condition, and if the hardware
information does not match, a new activation of the ex-
ecutable file for the particular client is required.

[0004] As an example of a prior art protection system,
the following syntax may be used to attain a hardware
binding implementation:

1) if(lisHardwareBindingValid())
2) condition (eg. TerminateProcess)

[0005] That is, the prior art suggests an approach in
which a comparison of the hardware information of the
currently used client and the information stored in a li-
cense file or something similar is performed. However,
this check might be circumvented by tampering with hard-
ware verification code, e.g., using so-called "patching".
[0006] Still further, a hardware binding may bind soft-
ware to a specific client using a specific license. Usually,
an activation server may provide such a license to the
software end-user. A component called Digital Rights
Management (DRM) ensures that the activation server
only provides licenses to end-users who have paid for
the software. This component could also be called au-
thorization component.

[0007] One possible DRM implementation would be
that the end-user has to enter, e.g., a serial number that
he or she received upon payment in order to be able to
activate the software. Another possibility is an account
that the end-user has used to pay for the software.

10

15

20

25

30

35

40

45

50

55

Summary

[0008] There is a need for an efficient implementation
to protect un-authorized use of an executable file.
[0009] In a first aspect, there is provided a method for
enabling nominal flow of an executable file on a client,
wherein the executable file comprises executable code
lacking at least one nominal constant, and wherein only
the nominal constant enables the nominal flow of the ex-
ecutable file. The method is performed by the client and
comprises retrieving substantially unique hardware infor-
mation of the client, transmitting one of the hardware in-
formation and information derived therefrom to a server,
receiving atleast one transformed constant that has been
transformed based on one of the hardware information
and the information derived therefrom, and performing,
using one of the hardware information and the informa-
tion derived therefrom, an inverse transformation on the
at least one transformed constant to recover the nominal
constant.

[0010] In a second aspect, there is provided a method
for enabling nominal flow of an executable file on a client,
wherein the executable file comprises executable code
lacking at least one nominal constant, wherein only the
nominal constant enables the nominal flow of the exe-
cutable file and wherein a server contains or has access
to the at least one nominal constant. The method is per-
formed by the server and comprising receiving, from the
client, one of substantially unique hardware information
of the client and information derived therefrom, trans-
forming the at least one nominal constant using one of
the hardware information and the information derived
therefrom, and transmitting, to the client, the at least one
transformed constant.

[0011] The executable code may lack the at least one
nominal constant in the sense that the code does not
include any information about the nominal value of that
constant. The code may still allocate memory for that
constant and, optionally, fill that memory with a non-nom-
inal (e.g., dummy) value.

[0012] The hardware information can be, but need not
be globally unique. As an example, it can also be locally
unique (e.g., within a specific geographic area). Alterna-
tively, or additionally, there is just a very low possibility
that two clients will yield or be associated with identical
hardware information (of, for example, 1 percent or less).
[0013] In one scenario, if the hardware information of
a client machine currently used to run the executable file
is different from the client machine used during activation,
the inverse transformation will cause wrong results (i.e.,
a wrong constant), and therefore the software logic of
the executable file will cause undefined behavior. Such
undefined behavior may correspond to a non-nominal
flow of the executable file.

[0014] In the transmitting step of the client, in addition
to the hardware information or the information derived
therefrom, atleastone (e.g., non-nominal) constant (that,
e.g., still is to be transformed) may be transmitted. The

3 EP 2 998 895 A1 4

constant that is transmitted may be extracted from the
executable file or may have been received by the client
together with or separate from the executable file. In turn,
in the receiving step of the server, the substantially
unique hardware information, or the information derived
therefrom, and at least one constant to be transformed
may be received.

[0015] The method may further comprise, for example
as a preparatory step, providing the client with the exe-
cutable file in which the at least one nominal constant
has been obfuscated. The client will thus receive the ex-
ecutable file (e.g., via a download or via a data carrier
such as a CD-ROM) in an obfuscated format. In the ex-
ecutable file the nominal constant may be obfuscated by
an inserted code portion for the inverse transformation.
In that case, the code portion may be provided in a byte
code format interpretable during runtime of the executa-
ble file. In that way, traceability of the present technique
may inone variant lowered to atleastincrease the burden
for an attacker to identify changes made in the executable
file.

[0016] The client method may further comprise apply-
ing, prior to the transmitting, a hashing function to the
(substantially unique) hardware information. The result-
ing hash value may be transmitted to the server as the
information derived from the hardware information. In
turn, in the server method, the transforming step may be
performed using the hash value of that hardware infor-
mation, wherein the hash value represents the informa-
tion derived from the hardware information. This measure
may in one example serve for decreasing the amount of
data to be transmitted from the client to server (e.g., to
lessen the burden on network traffic as the hash value
has far less bytes than the hardware information). Alter-
natively, or additionally, in such a way confidentiality of
the hardware information may be achieved, which is now
not transmitted in cleartext.

[0017] In a refinement, in the transmitting step of the
client method a hash value of the executable file may be
transmitted to the server. In turn, the transforming step
of the server method may further comprise randomly
combining, using arandom number, the atleast one nom-
inal constant with one of the hardware information and
the information derived therefrom. Inthat case, the server
method may further comprise generating, prior to the ran-
domly combining step, the random number using a hash
value of the executable file as a seed. In that way, an
additional random element can be introduced which al-
lows encrypting the transformation/ inverse transforma-
tion relationship.

[0018] In a further refinement, one or more of the at
least one transformed constant, the hardware informa-
tion and the information derived therefrom may be ex-
pressed as a numerical value, respectively. Generally,
the (inverse) transformation may be regarded as a
(de-)encryption process. As an example, the (inverse)
transformation may comprise at least one of one or more
reversible arithmetic operations on the transformed

10

15

20

25

30

35

40

45

50

55

(nominal) constant and one of the hardware information
and the information derived therefrom, and one or more
reversible logical operations on the transformed (nomi-
nal) constant and one of the hardware information and
the information derived therefrom. In this way, the pro-
posed approach enables obfuscation (or encryption) of
the nominal value using, for example, simple and revers-
ible standard functions/operators.

[0019] Still further, the client-side method may com-
prise building a license file. In one exemplary variant, the
license file may be built based on the transformed con-
stants obtained from the transmitting and receiving steps.
The method may further comprise determining whether
the license matches one of the hardware information and
the information derived therefrom. If the determining step
is affirmative, only the step of performing the inverse
transformation is performed based on the one or more
transformed constants from the license file. This measure
serves for enabling nominal flow also in case the client
is offline or has otherwise no contact to the server.
[0020] Optionally, the method may further comprise
loading, prior to the performing, the transformed con-
stants or the nominal constants (i.e., their nominal val-
ues) into a memory of the server.

[0021] Further optionally, the client-side method and
the server-side method may comprise authenticating, for
example prior to the client retrieving step and the server
receiving step, the client at the server (e.g., using login
information and credentials). This measure can serve for
combining the advantages of the proposed technique
and of DRM. This approach may ascertain that only users
(clients) having validly purchased the executable file are
provided with the transformed constants.

[0022] The at least one nominal constant may be a
numerical value used in the executable code, which
number remains unchanged during the entire runtime of
the executable file. In that case, the at least one nominal
constant may be at least one of a constant not used for
pointer operations or referencing operation, and a float-
ing point number constant. Also this measure can serve
for avoiding traceability of the proposed approach, since
the software (executable file) is less likely to crash or is
at least likely to cause a crash at a later point of the ex-
ecution flow.

[0023] The substantially unique hardware information
may comprise one or more of the following elements: a
Media Access Control, MAC, address of the client, an
identity of one or more constituent hardware components
of the client (which need not necessarily be unique each
but possibly in their combination), an International Mobile
Subscriber Identity, IMSI, of the client, and an Interna-
tional Mobile Station Equipment Identity, IMEI, of the cli-
ent. Generally, the hardware information can comprise
information readily available on the client. As said, "sub-
stantially unique" does not necessarily imply global
uniqueness as for example the IMEI does; for instance,
the hardware information may comprise several IDs of
hardware components (such as processors, graphic

5 EP 2 998 895 A1 6

cards, sound cards etc.) of the client, which combination
of IDs is at least unlikely to occur a second time in a given
set of clients. In a further aspect, there is provided a com-
puter program product comprising program code por-
tions for performing the method of the first aspect when
the computer program product is executed on one or
more computing devices, such as clients and servers.
The computer program product may be stored on a com-
puter readable recording medium.

[0024] Still further, it is to be noted that the method
aspects may also be embodied on an apparatus accord-
ing to fourth and fifth aspects, respectively, comprising
at least one processor and a suitable local or remote
memory (e.g., a semiconductor component or cloud stor-
age) for carrying out any one of the method steps.

Brief Description of the Drawings

[0025] Exemplary embodiments of the technique pre-
sented herein are described herein below with reference
to the accompanying drawings, in which:

Fig. 1 shows components comprised in an exempla-
ry device embodiment realized in the form of
apparatus (which may reside, e.g., in a client,
a server and an optional protection engine);
Fig. 2 shows a method embodiment which also re-
flects the interaction between the components
of the apparatus embodiment;

Fig. 2A shows a first optional method embodiment to
be used with the embodiment shown in Fig. 2;
Fig. 2B shows a second optional preparatory method
embodiment to be used with the embodiment
shown in Fig. 2; and

Fig. 3 shows an example data structure (e.g., exe-
cutable file) for illustrating an exemplary use
case.

Detailed Description

[0026] In the following description, for purposes of ex-
planation and not limitation, specific details are set forth
(such as particular signalling steps and client/server con-
figurations) in order to provide a thorough understanding
of the technique presented herein. It will be apparent to
one skilled in the art that the present technique may be
practiced in other embodiments that depart from these
specific details. For example, the embodiments will pri-
marily be described in the context of licensing and DRM
techniques; however, this does not rule out the use of
the present technique in connection with (future) tech-
nologies consistent with licensing and DRM. Moreover,
while certain embodiments will be described with refer-
ence to an assembly language, this does not rule out that

10

15

20

25

30

35

40

45

50

55

the technique presented herein can also be practiced in
connection with a higher-level programming language.
[0027] Moreover, those skilled in the art will appreciate
that the services, functions and steps explained herein
may be implemented using software functioning in con-
junction with a programmed microprocessor, or using an
Application Specific Integrated Circuit (ASIC), a Digital
Signal Processor (DSP), a field programmable gate array
(FPGA) or general purpose computer. It will also be ap-
preciated that while the following embodiments are de-
scribed in the context of methods and devices, the tech-
nique presented herein may also be embodied in a com-
puter program product as well as in a system comprising
acomputer processor and a memory coupled to the proc-
essor, wherein the memory is encoded with one or more
programs that execute the services, functions and steps
disclosed herein.

[0028] Without loss of generality, the proposed solu-
tion in the present, exemplary embodiments consists of
two parts and requires a server to function in a secure
way. The solution binds constants of the executable code
to the hardware information of a machine, on which the
software represented by the executable file is or was ac-
tivated. Constants may be numbers used in executable
code for calculation purposes, which are not changing
during the entire runtime. An example for a constant
would be PI (3.14159265359), which could be used in-
side an algorithm to calculate the volume of a cylinder.
[0029] The binding of constants may be done during a
protection process of the executable file. Constants or
placeholders therefor may be searched inside the exe-
cutable file and modified to not match the original con-
stants anymore, replaced by variants, or obfuscated oth-
erwise. Code portions may then be inserted in the code
of the executable file (e.g., right before each constant is
used in the executable flow) to transform the constant
back to the original value, insert the constant or de-ob-
fuscate otherwise. The de-obfuscation is dependent on
specific hardware information of the machine, and there-
fore different hardware in the machine currently used
than the machine used during the activation process will
result in a wrong inversely transformed constant. The
result will be a non-nominal flow of the executable file
(e.g., in terms in wrong calculation results and, based
thereon, wrong display or play-out behavior).

[0030] Fig. 2 shows components comprised in an ex-
emplary system embodiment realized to comprise a cli-
ent (or client machine) 2001, a server 2002 and an op-
tional protection engine 2003. As shown in Fig. 2, the
client 2001 comprises a core functionality (e.g., one or
more of a Central Processing Unit (CPU), dedicated cir-
cuitry and/or a software module) 20011, an optional
memory (and/or database) 20012, a transmitter 20013
and a receiver 20014. Moreover, the client 2001 com-
prises a retriever 20015, a performer 20016, an optional
provider 20017 and an optional applicator 20018.
[0031] Moreover, the server 2002 comprises a core
functionality (e.g., one or more of a Central Processing

7 EP 2 998 895 A1 8

Unit (CPU), dedicated circuitry and/or a software module)
20021, an optional memory (and/or database) 20022, a
transmitter 20023 and a receiver 20024. Moreover, the
server 2002 comprises a transformer 20025, an optional
combiner 20026 and an optional generator 20027.
[0032] In a similar manner, the optional protection en-
gine 2003 comprises a core functionality (e.g., one or
more of a Central Processing Unit (CPU), dedicated cir-
cuitry and/or a software module) 20031, an optional
memory (and/or database) 20032, an optional transmit-
ter 20033 and an optional receiver 20034. Moreover, the
protection engine 2003 comprises an optional reader
20035, an optional searcher 20036 and an optional ob-
fuscator 20037.

[0033] In the following paragraphs, x = 1, 2 or 3 (the
client 2001, the server 2002 or the protection engine
2003). As partly indicated by the dashed extensions of
the functional blocks of the CPUs 200x1, the retriever
20015, the performed 20016, the provider 20017 and the
applicator 20018 (of the client 2001), the transformer
20025, the combiner 20026 and the generator 20027 (of
the server 2002) and the reader 20035, the searcher
20036 and the obfuscator 20037 (of the protection engine
2003) as well as the memory 200x1, the transmitter
200x3 and the receiver 200x4 may at least partially be
functionalities running on the CPUs 200x2, or may alter-
natively be separate functional entities or means control-
led by the CPUs 200x1 and supplying the same with in-
formation. The transmitter and receiver components
200x3, 200x4 may be realized to comprise suitable (soft-
ware and/or hardware) interfaces and/or suitable signal
generation and evaluation functions.

[0034] The CPUs 200x1 may be configured, for exam-
ple, using software residing in the memories 200x2, to
process various data inputs and to control the functions
of the memories 200x2, the transmitter 200x3 and the
receiver 200x3 (as well as of the retriever 20015, the
performed 20016, the provider 20017 and the applicator
20018 (of the client 2001), the transformer 20025, the
combiner 20026 and the generator 20027 (of the server
2002) and the reader 20035, the searcher 20036 and the
obfuscator 20037 (of the protection engine 2003)). The
memory 200x2 may serve for storing program code for
carrying out the methods according to the aspects dis-
closed herein, when executed by the CPU 200x1.
[0035] Itis to be noted that the transmitter 200x3 and
the receiver 200x4 may be provided as an integral trans-
ceiver, as is indicated in Fig. 2. It is further to be noted
that the transmitters/receivers 200x3, 200x4 may be im-
plemented as physical transmitters/receivers for trans-
ceiving via an air interface or a wired connection, as rout-
ing/forwarding entities/interfaces between network ele-
ments, as functionalities for writing/reading information
into/from a given memory area or as any suitable com-
bination of the above. At least one of the retriever 20015,
the performed 20016, the provider 20017 and the appli-
cator 20018 (of the client 2001), the transformer 20025,
the combiner 20026 and the generator 20027 (of the serv-

10

15

20

25

30

35

40

45

50

55

er 2002) and the reader 20035, the searcher 20036 and
the obfuscator 20037 (of the protection engine 2003), or
the respective functionalities, may also be implemented
as a chipset, module or subassembly.

[0036] Fig. 2 shows a first method embodiment and
also reflects the interaction between the components of
the system embodiment of Fig. 1. In the signalling dia-
gram of Fig. 2, time aspects between signalling are re-
flected in the vertical arrangement of the signalling se-
quence as well as in the sequence numbers. It is to be
noted that the time aspects indicated in Fig. 2 do not
necessarily restrict any one of the method steps shown
to the step sequence outlined in Fig. 2. This applies in
particular to method steps that are functionally disjunctive
with each other. For instance, steps S1-0a and S1-0b
belonging to the protection process are shown immedi-
ately before the remaining steps performed during runt-
ime; however, this does not rule out that the protection
process has been performed considerably ahead of the
runtime processes.

[0037] The method embodiment of Fig. 2 illustrated an
activation process for an executable file on a particular
client machine denoted by 2001. As an optional prepar-
atory measure, in step S1-0 (client side) and step S2-0
(serverside), the client2001 and the server 2002 perform
authenticating the client 2001 at the server 2002 using
login information and credentials (e.g., a user name and
a password).

[0038] At the beginning, in step S1-1, for example
when the executable file is started, the retriever 20015
of the client 2001 retrieves hardware information of the
client (e.g., by querying individual hardware components
thereof or by reading it from a registry file). The hardware
information is at least substantially unique, which means
that there is a low probability of another client machine
exhibiting the same hardware information. The retrieved
hardware information may be optionally hashed to gen-
erate a hash value derived from the hardware information
(step 1-1a) beforeitis added to a so-called requestToken.
The nominal constants in the executable file to be pro-
tected were already previously extracted from the exe-
cutable file (see Fig. 2B, step prep-1a) and may have
been transformed during the protection process.

[0039] The client 2001 will then connect to the server
2002 and send, via the transmitter 20013 of the client
2001, the requestToken to server 2002. The requestTo-
ken contains i) the (hashed) hardware information of the
current machine (client 2001), ii) optionally the nominal
constants (as extracted from the executable file or oth-
erwise determined and optionally as encrypted data) and
i), further optionally, a hash value of the executable file
which was protected (by obfuscating the nominal con-
stants).

[0040] In step S2-1, the receiver 20024 of the server
2002 receives the requestToken. Then, on the server
2002, a responseToken may be calculated as will now
be described in more detail.

[0041] The responseToken generally contains the

9 EP 2 998 895 A1 10

transformed constants. That is, in step S2-2, the trans-
former 20025 of the server 2002 transforms the nominal
constant using the hardware information (or the corre-
sponding hash value).

[0042] As an option, in step S2-2a, the (random
number) generator 20027 of the server 2002 is initialized
with the same seed as during the protection process (e.qg.,
using the hash value of the executable file or another
seed) and therefore, the random number is deterministic
(i.e., always yields the same numbers in the same order).
Then, in an optional step S2-2b, the combiner 20026 of
the server 2002 randomly combines the nominal con-
stants with the (hashed) hardware information of the re-
questToken. For the transformation of constants, arith-
metic and logical operations can be used (such as sum-
ming, subtraction, exclusive OR (XOR).

[0043] Instep S2-3, the transmitter 20023 of the server
2002 sends the responseToken back to the client 2002,
whereupon, in step S1-3, the responseToken is received
by the receiver 20014 of the client 2001.

[0044] In an optional step S1-4, the client 2001 may
load the responseToken into memory. Then, instep S1-5,
the performer 20016 of the client 2001 performs an in-
verse transformation on the received constants using the
hardware information (or the value derived therefrom,
e.g., the hash value), and the inversely transformed con-
stants may be used to recalculate the original constants
at runtime so as to allow nominal flow the executable file.
[0045] That is, the performer 20016 uses the received
transformed constants and the retrieved hardware infor-
mation to calculate the inverse transformation of the con-
stants before they are used in the executable file lacking
the nominal constant(s). If the hardware information of
the client 2001 currently used is different to the client
2001 used during activation, the inverse transformation
will cause wrong results and therefore the software logic
of the executable file will cause undefined behavior.
[0046] Inonevariant, only so-called "secure constants"
are used for the protection (e.g., during the protection
process and/or during runtime). Those "secure con-
stants" are constants (e.g., floating point numbers),
which are not used for pointer arithmetic. Such floating
point numbers are usually used in physics computation
and rendering and may lead to unexpected computations
and wrong displaying of graphics. However, those secure
constants are preferred, because they do not cause the
software to crash or at least cause a crash at a later point
of the execution flow.

[0047] Fig. 2A shows a first optional method embodi-
ment to be used with the embodiment shown in Fig. 2.
[0048] As an overview, the above described activation
process is usually done once and may then be cached
into a local license file so that the executable file can also
be used when the client 2001 is offline or otherwise has
no connection to the server 2002. As example, the trans-
formed constant(s) may be logged in the license infor-
mation so as to allow a valid inverse transformation. As
such, the nominal constants can be recovered during

10

15

20

25

30

35

40

45

50

55

runtime even when the client 2001 has no contact to the
server 2002.

[0049] Accordingly, if no license exists (step alt-0), a
new first type of license (step alt-1a) has only to be built
when the hardware information has changed since the
activation process. If the hardware information matches
the license (step alt-1b), only the step of performing S1-5
the inverse transformation (and the optional step S1-4)
may be performed based on transformed constants from
the license (file).

[0050] In more detail, the proposed approach can be
combined with any DRM approach. For instance, the pro-
posed approach may be combined with an online plat-
form for games (or other executable files) where end-
users can purchase games (or other executable files).
The server 2002 component may run as part of the plat-
form servers. When a client 2001 requests an activation
as described above from the platform servers, only when
this end-user has purchased the game (or other execut-
able file) (i.e., the user has the rights and, thus, is author-
ized), will the server 2003 return a second type of license
(such as a DRM license). Usage of DRM may consider-
ably augment to the proposed approach, since the scope
of users attaining a valid license from the server 2002 is
limited to genuine purchasers of the executable file.
[0051] Fig. 2B shows a second optional method em-
bodiment to be used with the embodiment shown in Fig.
2. Thatis, as a preparatory measure, the client 2001 may
be provided with the executable file containing the ob-
fuscated code for recovering the nominal constants,
while the server 2002 may be provided with the nominal
constants.

[0052] Inmoredetail,in step prep-1a, the reader20035
of the of the protection engine 2003 parses the execut-
able file, so that in step prep-1b, the searcher 20036 of
the protection engine 2003 searches constants refer-
enced by code inside the executable file. The executable
file may be received by the reader 20035 in an executable
format (e.g., the Windows™ Portable Executable for-
mat).

[0053] Then, in step prep-1c, the obfuscator 20037 of
the protection engine 2003 replaces the instructions that
use these constants with an algorithm that processes the
hardware information of the current machine, such as
with a pseudo-random number generator (PRNG) gen-
erating static keys and hardware bound license informa-
tion (step prep-1d). This algorithm re-calculates the nom-
inal constant from the hardware information during runt-
ime of the application.

[0054] Finally, in step prep-1e, the transmitter 20013
of the protection engine 2003 transmits all protected con-
stants in their nominal form to the server 2002. In this
way, the server 2002 obtains a priori knowledge of all
protected nominal constants. In an alternative implemen-
tation, the client 2001 retrieves the protected (i.e., en-
crypted) constants from the executable file or any other
data source and transmits same to the server 2002 to-
getherwith the (optionally hashed) hardware information.

11 EP 2 998 895 A1 12

Of course, the two approaches could also be combined
as needed.

[0055] Fig. 3 shows an example data structure (exe-
cutable file) for illustrating an exemplary use case.
[0056] The upper part of Fig. 3 shows an example of
unprotected executable code, (i.e., before the protection
process). This is code as it might be found in an unpro-
tected executable file, which is calculating the volume of
a cylinder.

1’) float pi = 3.1415;
2’) float cylinderVolume = pi * (radius * radius) *
height;

[0057] The lower part of Fig. 3 shows an example of
protected executable code. Functionally, the code below
is the same code as above, which code below would
appear in the protected executable file after the protec-
tion process, except that the constant Pl is calculated at
runtime depending on the hardware information of the
currently used machine.

1) float pi = 0;

2) pi += RANDOM_NUMBER _01;

3) pi ~= RANDOM_NUMBER_02;

4) pi -= TRANSFORMED_CONSTANT;

5) pi += RANDOM_NUMBER _03;

6) pi *= HW_INFO;

7) pi -= RANDOM_NUMBER _04;

8) float cylinderVolume = pi * (radius * radius) *
height;

[0058] It is to be noted that the above code example
would alsoworkwhen relyingonsteps 1, 4, 6 and 8 alone,
which would already allow for transformation/inverse
transformation of the constant. However, when addition-
ally applying steps 2, 3, 5 and 7, an additional random
element is introduced, which only works when e.g. the
hash value of the executable file is used as a seed for
the above-discussed PRNG. Still further, the above use
case example was directed to the constant Pi. However,
this does of course not exclude the use of other con-
stants, such as g = 9.81 (m/s2) for calculation of free fall
acceleration or G = 6.67384 - 10-11 (m3/(kg-s2)) for cal-
culation of gravitational force between two masses.
[0059] Accordingly, the above code shows how hard-
ware binding would be attained with the proposed ap-
proach. Thus, the approach no longer involves a com-
parison, and if the hardware information of the currently
used machine (client) is different than the one used for
activation (as, e.g., stored in a license file or something
similar), then the constant would be different than it was
in its nominal form, which prevents a nominal flow of the
executable file.

[0060] It is believed that the advantages of the tech-
nique presented herein will be fully understood from the
foregoing description, and it will be apparent that various
changes may be made in the form, constructions and

10

15

20

25

30

35

40

45

50

55

arrangement of the exemplary aspects thereof without
departing from the scope of the invention or without sac-
rificing all of its advantageous effects. Because the tech-
nique presented herein can be varied in many ways, it
will be recognized that the invention should be limited
only by the scope of the claims that follow.

Claims

1. A method for enabling nominal flow of an executable
file (300) on a client (2001), wherein the executable
file comprises executable code lacking at least one
nominal constant, and wherein only the nominal con-
stant enables the nominal flow of the executable file,
the method being performed by the client and com-
prising:

retrieving (S1-1) substantially unique hardware
information of the client;

transmitting (S1-2) one of the hardware informa-
tion and information derived therefrom to a serv-
er (2002);

receiving (S1-3) at least one transformed con-
stant that has been transformed based on one
of the hardware information and the information
derived therefrom; and

performing (S1-5), using one of the hardware
information and the information derived there-
from, an inverse transformation on the at least
one transformed constant to recover the nomi-
nal constant.

2. The method according to claim 1, wherein:

in the transmitting step, the atleast one constant
is transmitted also.

3. The method according to claim 1 or 2, further com-
prising:

receiving (S1-0a), by the client, the executable
file in which at least one code portion for the
inverse transformation has been inserted.

4. The method according to claim 3, wherein:

the code portion is provided (S1-0b) in a byte
code format interpretable during runtime of the
executable file.

5. The method according to any one of claims 2 to 4,
further comprising:

applying (S1-1a), prior to the transmitting, a
hashing function to the hardware information,
wherein the resulting hash value is transmitted
to the server as the information derived from the

13 EP 2 998 895 A1 14

hardware information.

6. The method according to any one of claims 2 to 5,
wherein:

in the transmitting step, a hash value of the ex-
ecutable file is transmitted to the server.

7. The method according to any one of claims 2 to 6,
wherein:

one or more of the at least one transformed con-
stant, the hardware information and the informa-
tion derived therefrom are expressed as a nu-
merical value, respectively, and wherein:

the inverse transformation comprises at
least one of:

one or more reversible arithmetic oper-
ations on the transformed constant and
one of the hardware information and
the information derived therefrom; and
one or more reversible logical opera-
tions on the transformed constant and
one of the hardware information and
the information derived therefrom.

8. The method according to any one of claims 1 to 7,
further comprising:

building (alt-1a), a license file from the at least
one transformed constant obtained from the
transmitting and receiving steps.

9. A method for enabling nominal flow of an executable
file (300) on a client (2001), wherein the executable
file comprises executable code lacking at least one
nominal constant, wherein only the nominal constant
enables the nominal flow of the executable file and
wherein a server (2002) contains or has access to
the at least one nominal constant, the method being
performed by the server and comprising:

receiving (S2-1), from the client, one of substan-
tially unique hardware information of the client
and information derived therefrom;
transforming (S2-2) the at least one nominal
constant using one of the hardware information
and the information derived therefrom; and
transmitting (S2-3), to the client, the atleast one
transformed constant.

10. The method according to claim 9, wherein:

in the receiving step, the at least one constant
to be transformed is received also.

10

15

20

25

30

35

40

45

50

55

11. The method according to claim 9 or 10, wherein:

the transforming step is performed using a hash
value of the hardware information, wherein the
hash value represents the information derived
from the hardware information.

12. The method according to any one of claims 9 to 11,
wherein the transforming step further comprises:

randomly combining (S2-2b), using a random
number, the at least one nominal constant with
one of the hardware information and the infor-
mation derived therefrom.

13. The method according to claim 12, further compris-
ing:

generating (S2-2a), prior to the randomly com-
bining step, the random number using a hash
value of the executable file as a seed.

14. The method according to any one of claims 9 to 13,
wherein:

the transforming step comprises at least one of:

one or more reversible arithmetic opera-
tions on the nominal constant and one of
the hardware information and the informa-
tion derived therefrom; and

one ormore reversible logical operations on
the nominal constant and one of the hard-
ware information and the information de-
rived therefrom.

15. The method according to claim 1 or claim 9, wherein:

the at least one nominal constant is a numerical
value used in the executable code, which
number remains unchanged during the entire
runtime of the executable file.

16. The method according to claim 15, wherein:

the at least one nominal constant is at least one
of:

a constant not used for pointer operations
or referencing operations; and
a floating point number constant.

17. The method according to any one of the preceding
claims, wherein the hardware information comprises
one or more of the following elements:

a Media Access Control, MAC, address of the
client;

15 EP 2 998 895 A1 16

an identity of one or more constituent hardware Amended claims in accordance with Rule 137(2)

EPC.

components of the client;
an International Mobile Subscriber Identity, IM-
S|, of the client; and

a component (20023) configured to transmit, to
the client, the at least one transformed constant.

A method for enabling nominal flow of an executable

an International Mobile Station Equipmentiden- 5 file (300) on a client (2001), wherein the executable
tity, IMEI, of the client. file comprises executable code lacking at least one
nominal constant, wherein only the nominal constant
18. A computer program product comprising program enables the nominal flow of the executable file, and
code portions for performing the method of any one wherein the at least one nominal constant is a nu-
of the preceding claims when the computer program 70 merical value used in the executable code, which
product is executed on one or more computing de- number remains unchanged during the entire runt-
vices, preferably stored on a computer readable re- ime of the executable file, the method being per-
cording medium. formed by the client and comprising:
19. Aclient (2001) configured to enable nominal flow of 15 retrieving (S1-1) substantially unique hardware
an executable file (300) on the client, wherein the information of the client;
executable file comprises executable code lacking transmitting (S1-2) one of the hardware informa-
at least one nominal constant, and wherein only the tion and information derived therefrom to a serv-
nominal constant enables the nominal flow of the er (2002);
executable file, the client comprising: 20 receiving (S1-3) at least one transformed con-
stant that has been transformed by means of an
acomponent (20015) configured to retrieve sub- encryption process based on one of the hard-
stantially unique hardware information of the cli- ware information and the information derived
ent; therefrom; and
acomponent (20013) configured to transmitone 25 performing (S1-5), using one of the hardware
of the hardware information and information de- information and the information derived there-
rived therefrom to a server (2002); from, an inverse transformation on the at least
a component (20014) configured to receive at one transformed constant to recover the nomi-
least one transformed constant that has been nal constant, wherein the inverse transformation
transformed based on one of the hardware in- 30 is a decryption process.
formation and the information derived there-
from; and The method according to claim 1, wherein:
acomponent (20016) configured to perform, us-
ing one of the hardware information and the in- in the transmitting step, the at least one nominal
formation derived therefrom, an inverse trans- 35 constant is transmitted in encrypted form.
formation on the at least one transformed con-
stant to recover the nominal constant. The method according to claim 1 or 2, further com-
prising:
20. A server (2002) configured to enable nominal flow
of an executable file (300) on a client (2001), wherein 40 receiving (S1-0a), by the client, the executable
the executable file comprises executable code lack- file in which at least one code portion for the
ing at least one nominal constant, wherein only the inverse transformation has been inserted.
nominal constant enables the nominal flow of the
executable file and wherein the server contains or The method according to claim 3, wherein:
has access to the at least one nominal constant, the 45
server comprising: the code portion is provided (S1-0b) in a byte
code format interpretable during runtime of the
a component (20024) configured to receive, executable file.
from the client, one of substantially unique hard-
ware information of the client and information 50 The method according to any one of claims 2 to 4,
derived therefrom; further comprising:
a component (20025) configured to transform
the at least one nominal constant using one of applying (S1-1a), prior to the transmitting, a
the hardware information and the information hashing function to the hardware information,
derived therefrom; and 55 wherein the resulting hash value is transmitted

to the server as the information derived from the
hardware information.

17 EP 2 998 895 A1 18

The method according to any one of claims 2 to 5,
wherein:

in the transmitting step, a hash value of the ex-
ecutable file is transmitted to the server.

The method according to any one of claims 2 to 6,
wherein:

one or more of the at least one transformed con-
stant, the hardware information and the informa-
tion derived therefrom are expressed as a nu-
merical value, respectively, and wherein:

the inverse transformation comprises at
least one of:

one or more reversible arithmetic oper-
ations on the transformed constant and
one of the hardware information and
the information derived therefrom; and
one or more reversible logical opera-
tions on the transformed constant and
one of the hardware information and
the information derived therefrom.

The method according to any one of claims 1 to 7,
further comprising:

building (alt-1a), a license file from the at least
one transformed constant obtained from the
transmitting and receiving steps.

A method for enabling nominal flow of an executable
file (300) on a client (2001), wherein the executable
file comprises executable code lacking at least one
nominal constant, wherein only the nominal constant
enables the nominal flow of the executable file,
wherein the at least one nominal constant is a nu-
merical value used in the executable code, which
number remains unchanged during the entire runt-
ime of the executable file, and wherein a server
(2002) contains or has access to the at least one
nominal constant, the method being performed by
the server and comprising:

receiving (S2-1), from the client, one of substan-
tially unique hardware information of the client
and information derived therefrom;
transforming (S2-2), by means of an encryption
process, the at least one nominal constant using
one of the hardware information and the infor-
mation derived therefrom; and

transmitting (S2-3), to the client, the atleast one
transformed constant.

10. The method according to claim 9, wherein:

10

15

20

25

35

40

45

50

55

10

1.

12.

13.

14.

15.

16.

in the receiving step, the at least one nominal
constant to be transformed is received in en-
crypted form.

The method according to claim 9 or 10, wherein:

the transforming step is performed using a hash
value of the hardware information, wherein the
hash value represents the information derived
from the hardware information.

The method according to any one of claims 9 to 11,
wherein the transforming step further comprises:

randomly combining (S2-2b), using a random
number, the at least one nominal constant with
one of the hardware information and the infor-
mation derived therefrom.

The method according to claim 12, further compris-
ing:

generating (S2-2a), prior to the randomly com-
bining step, the random number using a hash
value of the executable file as a seed.

The method according to any one of claims 9 to 13,
wherein:

the transforming step comprises at least one of:

one or more reversible arithmetic opera-
tions on the nominal constant and one of
the hardware information and the informa-
tion derived therefrom; and

one ormore reversible logical operations on
the nominal constant and one of the hard-
ware information and the information de-
rived therefrom.

The method according to any one of claims 1 to 14,
wherein:

the at least one nominal constant is at least one
of:

a constant not used for pointer operations
or referencing operations; and
a floating point number constant.

The method according to any one of the preceding
claims, wherein the hardware information comprises
one or more of the following elements:

a Media Access Control, MAC, address of the
client;

an identity of one or more constituent hardware
components of the client;

19 EP 2 998 895 A1

an International Mobile Subscriber Identity, IM-
S|, of the client; and

an International Mobile Station Equipment Iden-
tity, IMEI, of the client.

17. A computer program product comprising program

code portions for performing the method of any one
of the preceding claims when the computer program
product is executed on one or more computing de-
vices, preferably stored on a computer readable re-
cording medium.

18. A client (2001) configured to enable nominal flow of

an executable file (300) on the client, wherein the
executable file comprises executable code lacking
atleast one nominal constant, wherein only the nom-
inal constant enables the nominal flow of the exe-
cutable file, and wherein the at least one nominal
constant is a numerical value used in the executable
code, which number remains unchanged during the
entire runtime of the executable file, the client com-
prising:

acomponent (20015) configured to retrieve sub-
stantially unique hardware information of the cli-
ent;

acomponent (20013) configured to transmit one
of the hardware information and information de-
rived therefrom to a server (2002);

a component (20014) configured to receive at
least one transformed constant that has been
transformed by means of an encryption process
based on one of the hardware information and
the information derived therefrom; and
acomponent (20016) configured to perform, us-
ing one of the hardware information and the in-
formation derived therefrom, an inverse trans-
formation on the at least one transformed con-
stant to recover the nominal constant, wherein
the inverse transformation is a decryption proc-
ess.

19. A server (2002) configured to enable nominal flow

of an executable file (300) on a client (2001), wherein
the executable file comprises executable code lack-
ing at least one nominal constant, wherein only the
nominal constant enables the nominal flow of the
executable file, wherein the atleast one nominal con-
stant is a numerical value used in the executable
code, which number remains unchanged during the
entire runtime of the executable file, and wherein the
server contains or has access to the at least one
nominal constant, the server comprising:

a component (20024) configured to receive,
from the client, one of substantially unique hard-
ware information of the client and information
derived therefrom;

10

15

20

25

30

35

40

45

50

55

1"

20

a component (20025) configured to transform,
by means of an encryption process, the at least
one nominal constant using one of the hardware
information and the information derived there-
from; and

a component (20023) configured to transmit, to
the client, the at least one transformed constant.

EP 2 998 895 A1

¥c00¢
/€200C
Xd/xL

ww%w BUIqUIo) mwoom JauLiojsued |

12002 3Inpow MS ‘A1ndud NdD

............ I
| 22002 WIW !

€00¢ J9A19S

T 614

| T TTTTTTTT T T AT s E e |
I ! ittt K !
| ! ! 1
! L ! 1
1 9E00Z 12421835 l
— [ettt h) | Attt | —
! rE00Z | | Vo ' !
! /E£002 " Vo ' !
; XL | yzgpe s0ie05njq0 SE00Z 18pE5Y !
[} 1
i TE00Z 3Inpow M ‘Anau ndo)|
1 — I
" | 2£00Z WA | “
! £00Z 5uIbUF 101393101 |

" | 2egatifintifiatiadiadbadh i 1

'8700¢ 107ejddy ~ 91007 Jowiopag

[Rt adidhadb ettt 1

¥100Z | | "

fe1002 | | !

X/XL LI00¢ 18pinoid S100¢ ‘onsuisy
11002 SINpPoW MS ‘A2 !Ndd

............ 1
. 2100 WIW |

100Z 3us!D

12

EP 2 998 895 A1

w m MO} X" |RUILLION m
i Semeeoe-mormooo- R teedttttdededie
JURISUOD *JSuURI} T< UO "jSURI] “AU
JUBJSUOD pauLIojSueL 12 OJul MH UO paseq buiuiopad S-1S
Bumwsues) €25 | | «~-omoo-oooo--- T ~
: ' Atowsw ojus Juejsuod ysues I< |
’ " buipeol p-1S
ol MH YOX eIsuoD TS e e T '
oJul MH + JUBISUOD [< -
= JuejSUOD paulojsuel) 12
oMUl MH - JUEISUOD I < > BuIA@SY £-1S
OJUI MK YIM JUBISUOD [Z ,
Bunnquiod Aopuey qe-¢s (axa’)ysey + juejsuod I + OJui MH
[(axa°)yseH] Joquinu pues bumwsues) z-15
bupersvag ez-zs | | b O — .
[ojur mH] JueIsuod 12 m (o1 MH)yseH | auguru
BuwJoysuel) z-zS ! buiAiddy er-1s
. e e e e e e fommmmmmmm—memaa)
(oxa’)ysey + Jueisuod 12 + Ojut MH [auaip] ojul pH
Bunisoay 1-2S Buinaley 1-1S
m) SjeRuapaLd pue LORBULIONUI m
' 075 uiboy Buisn JanISS 3y Je Jual2 3y} bugesnuany 015
................ R R e e S T T R E R R R S S o T T oo e eseiasyy
' A 104 ‘B3 [3pod ayAq] uonuod apoo |
! bupmnasd go-1s | S50
R I 7 ==/ -}
|||||||||||||||||||||||||||||||| A [y .ll|l|||lll||lll|.l||lllllllllllll-“
m [suoruod apos pauasu] exa: | SuBISUOD [RUILIOU : [suorprod apoo paesu;] axa- "
i gz b4 395 > bupmosd €0-1S 00T
e e o e e e e e e e et ccreemm e mm e — e —— e J _||ll|||I|||||l||u |||||||||||||||| '

Py g
10 %‘_o 10 512 J0 .
| Y | Y] 1] 20

£00¢ au1bua uonosl0ld 200 49MIBS 100Z u=lD

13

EP 2 998 895 A1

SIS + ¥-1S

‘e "By
H s34
............... “
oN calemprer
) sayojew asuadry |
" ar-yy |
||||||||||| L‘|I|||||L7|||II|.I|_
v uns s
\ snomaud woy
\ asuaoy buppng 54
e ey
U IS SRS RS N

£SISIXI 9SUIINT
oI

[auaip] ojur MH
bumsinay 1-1S

||’

|

< ||
G

:
8___
g
)
(o'}

1002 3ua1D \' [d .m_u_

14

EP 2 998 895 A1

5
19035 0} :
<) 0} SHUBISUOD [euNLoU BuIusues
SJUeISUO0D [eUILLIOU ' o7-datd
o= R e T PR
R .
sjuejsuod

JUIIOU 8Y) BuPUaIajaL UORPULIO)SUES
assanuy 104 (s)uoiriod spod 6urleasnigo
pr-daid

suesuod
JeuILoU 3y Bubualafal uogeuLiojsuesy
3SIaAUY 104 (S)uonod apoo Buiasur
or-daid

qgr-daid

er-aaid

m U3 03

v [suonuod apod payssui] axo*

=
o
N

£00¢ auibu3z uonosjold

v

dc 'bid4

15

EP 2 998 895 A1

T0¢
WA 69 ‘uoneasnjqo-aq

9jgelasdumnu]

'apoo aAq ‘0 = 1d jeoy (1

Y612y 4 (SNIpes snipey) x d
= DWN|OAIPUIAD Jeol (8
b0 "HIGWAN WOANVY =—1d (L
‘O4ANI MH =v 1d (9
’£0YIGWNN WOANVY =+ 1d (S
INVLSNOD ™ QIWHOISNVYL =—1d (p !

TOHFGWIN WOANVY =+ 1d (T

ll

“U613Y 4 (SNIpes 4 Snipey) 4 1d = awnjoAlspullAd Jeoy (2

'STHT'€ = Id Jeoy (1
(exa* ‘6°3) 00E 24nPNJIS ejeq

€ *b14

ZT007 WIN

16

10

15

20

25

30

35

40

45

50

55

EP 2 998 895 A1

des

Européisches
Patentamt

European

I

Patent Office

ce européen
brevets

[

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 14 00 3279

Categor Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
gory of relevant passages to claim APPLICATION (IPC)
Y US 6 334 189 B1 (GRANGER MARK J [US] ET 1-20 INV.
AL) 25 December 2001 (2001-12-25) GO6F21/12
* column 9 - column 11 *
* column 23 - column 25 *
* figures la, 1lb *
Y WO 01746786 Al (LIQUID AUDIO INC [US]) 1-20

28 June 2001 (2001-06-28)
* page 10 - page 11 *

* page 23 - page 25 *

* figure 3B *

TECHNICAL FIELDS
SEARCHED (IPC)

GOG6F
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
Munich 30 January 2015 Chabot, Pedro

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P:inte

T : theory or principle underlying the invention

E : earlier patent document, but published on, or

rmediate document document

after the filing date
D : document cited in the application
L : document cited for other reasons

& : member of the same patent family, corresponding

17

EP 2 998 895 A1

ANNEX TO THE EUROPEAN SEARCH REPORT

ON EUROPEAN PATENT APPLICATION NO. EP 14 00 3279

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

30-01-2015
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6334189 Bl 25-12-2001 NONE

WO 0146786 Al 28-06-2001 AT 285598 T 15-01-2005
AU 1432301 A 03-07-2001
DE 60016972 D1 27-01-2005
DE 60016972 T2 25-05-2005
EP 1240568 Al 18-09-2002
EP 1517215 A2 23-03-2005
EP 2400362 Al 28-12-2011
ES 2389725 T3 30-10-2012
JP 4689920 B2 01-06-2011
JP 2003518351 A 03-06-2003
us 6792113 B1 14-09-2004
US 2005033974 Al 10-062-2005
WO 0146786 Al 28-06-2001

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

18

	bibliography
	abstract
	description
	claims
	drawings
	search report

