
.:: Reversity GuideLines Speech ::.

Cryptography and Reverse Engineering

Author : Evilcry alias Giuseppe Bonfà
E-Mail : evilcodecave (at) gmail (dot) com / evilcry (at) gmail (dot) com
Web Site: http://evilcry.altervista.org

Index
The Theoretical Part

1. I ntroduction To The Speech
2. Meaning of the term CryptoRev
3. Actual State of Art of Applied Cryptography in Software Security Schemes
4. The Necessity of an RCE Approach for Crypto Sec Based Schemes
5. A Step Forward in the CryptoRev Scenario (Formation GuideLines)

The Practical Part
1. Frameworks and Libraries
2. First Step – Library Identification
3. Basical Most Common Implementations
4. Fast RSA
5. How To Recognize RSA
6. RSA Pointers
7. Fast BlowFish
8. Blowfish Pointers
9. Fast ElGamal
10. ElGamal Pointers
11. An overview of ECCs

Introduction To The Speech

The topic we will cover today is Cryptography and Applied Reverse Engineering, the preferred
OS will be obviously Windows, but Concepts and Techniques can be applied also for UNIX Like
platforms, and partially on some kind of Crypto Hardware Devices such FPGAs.
It's important to well define what kind of Speech will be this, surely not an How To Crack speech,
here we are Reversers and Not Crackers, people with Crack intentions can join to #Crackversity :)

So what is the principal objective of this meet?
To give a good and detailed Information about Reverse Engineering for Cryptography, you will find

● Basics needed to understand Critical Security Applications
● Basic Knowledge on Cryptography
● Well Defined Learning Paths
● Pointers and Links Useful for the learning process
● Reversing hints for most common Protection Schemes

The approach is a classical one, CryptoRev.

Meaning of the term CryptoRev

Many of you surely does not have ever heard the term CryptoRev, I’ve created this one to identify a
specific Branch of Reverse Engineering, expressively designed for Software/Hardware targets that
implements Crypto Secured Schemes.

Please note that CryptoRev could be taken as equivalent to Cryptanalysis, but it's important to
specify that, Cryptanalysis Approach is used when you have the Algorithm, many times isolated
from the context in which this one is applied.

For Example just immagine to have a new crypto algorithm, X Cipher..
The Crypographer will deals only with X's Vulnerabilities, Possible Attacks and Real Attacks.

CryptoReverser, starts from a lower level faces different difficulties, as:

● Code Localization
● Code Identification
● Software Architecture Used
● Weak/Wrong Conceptual Implementations

It's important to clarify the meaning of “Software Arch. Used”, many times can happen that we are
in front off Strong CryptoSignatures Schemes, that does not care about protecting Informations
(Keys, Passwords, Generation Strings) into the Memory.

Actual State of Art of Applied Cryptography in Software Security Schemes

Actually, cryptography covers a truly important role in the most significant/professional Software
Protection Schemes, 80% of them uses Classical Standardized algorithms such as RSA, Blowfish,
ElGamal, ECCs, and a little part implements truly Dangerous home made algorithms or untested
ones.

It’s important to say that in the latest years fortunately, many big Software Houses (Autodesk for
example) uses for its Software Protection Schemes, Strong Crypto Algorithms as for example
ECDSA. This is a great trend, because implies that Sw Houses understood the necessity to protect
Sensitive Strings (Passwords, Serial Numbers etc.) with Strong Algorithms.

This trend was also encouraged by the by the fact that we are in the era of MASSIVE
FRAMEWORKIZATION.

Obviously as in all things there are Advantages and Disadvantages:

Advantages: Fast and Easy Coding, free of basical potential bugs, in our case, code errors/bugs in
the effective Algorithm Implementations.

Disadvantages: Crypto Frameworkization leads to a big fundamental problem, many not well
formed coders implements protection schemes with Critical Conceptual Errors.
In the worst cases, traces of Passwords or any other String to protect can be Sniffed from memory.

So you can understand that a well coded Set of Crypto APIs, is not enough because human
Conceptual Architecture errors can lead a well designed code to the failure.

The Necessity of an RCE Approach for Crypto Sec Based Schemes

At this point, as you should understand, it's truly important for Software Houses (or Malicious
Reversers) to know first of all the basical differences between common Security Routines and
Crypto Based Schemes.

To understand better why this, just Imagine a 100000$ Protection Scheme, is in the interest of the
SwHouse to have a Secure Prediction over his product, and now appears the figure of
CryptoReverser.
This is only a field of possible applications, each Secure Communication software could be weak,
think for example about a Plugin for MSN that Encrypts our conversations, if is used a badly
implemented Algorithm the Key Exchangement Procedure leaves in the Memory or Net sensitive
data that can be reconstructed by a sort of MITM Attack.

A Step Forward in the CryptoRev Scenario (Formation Guide Lines)

What is of critical importance to understand is that, CryptoReversing needs high knowledge of
mathematics.

For a basic/intermediate CryptoReverser not all sub disciplines of math needs to be heavy studied,
but for sure there are a few branches that are Fundamental:

● Basic Mathematics
● Fundamental Mathematical Analysis
● Number theory its very important Modular Math
● Abstract algebra
● Probability Theory

 I'll report for you some link that should be read for a better understanding:

The Handbook Of Applied Cryptography is the first book that i suggest in particular the
following chapters:

● Chapter 2 - Mathematics Background
● Chapter 3 - Number-Theoretic Reference Problems

here the link http://www.cacr.math.uwaterloo.ca/hac/

My hint is to read the entire book, because is the Bibble of Cryptography, and during the practice
you will use it heavy!

Cryptography: Theory and Practice (Discrete Mathematics and Its Applications) (Hardcover)
by Douglas R. Stinson (Author)

The Crypto Tutorial
● http://www.antilles.k12.vi.us/math/cryptotut/home.htm

http://www.cacr.math.uwaterloo.ca/hac/
http://www.antilles.k12.vi.us/math/cryptotut/home.htm
http://www.amazon.com/exec/obidos/search-handle-url/105-7340240-8589200?_encoding=UTF8&search-type=ss&index=books&field-author=Douglas%20R.%20Stinson

Pure mathematics is fundamental but we are here to learn, CryptoReversing, so all this mathematics
needs a Coding counterpart, so here a little list of links for Coding Theory

http://www.adastral.ucl.ac.uk/~helger/crypto/link/coding_theory/

After mathematics, we have obviously to know the most common Crypto Algorithms involved in
secure protections but this is not an easy task and needs Time and Good Directions..

● Basic Ciphers (Caesar, Substitution, PolyAlphabetic, F-Pos like)
● Shift Register Sequences (Kluwer)
● Block Ciphers
● Public Key Cryptography
● Discrete Logarithm Based Problems
● RSA Based Schemes (Needs a study really Deep)
● Stream Ciphers
● Digital Signatures
● Key Management Techniques
● Elliptic Curve Cryptography

The Practical Part

Frameworks and Libraries

Due to the extreme complexity involved into actual Trusted CryptoSystems, Coders makes heavy
use of Libraries and Function Collections. Essentially during our reversing sessions we can meet
varius kinds of Logical Organizationsof these Libraries, some of them deals directly with the
mathematics necessary for the Crypto Algorithm others offer a faster and easiest way of coding, you
have directly the Algorithm and the only thing you need is the Key and the Plain/Cipher-Text.

Let's see the most spreaded libraries..

● MIRACL Multiprecision Integer and Rational Arithmetic C/C++ Library
● Crypto++ Library -
● Win32 OpenSSL -
● Widowds CryptoAPI -
● NET Framework cryptography
● The Legion of the Bouncy Castle
● free-LIP by Arjen K. Lenstra
● NTL

Obviously there are many many others Libraries less or more trusted,
yeah on Cryptography is important also to have Trusted code, many are the Statal Cryptographic
Backdoors, for example on CryptoAPI the famous _NSA Key :)

MIRACL - is a great Big Number Library which implements all of the primitives necessary to
design Big Number Cryptography, as for example RSA Schemes, it's not diffused on commercial
schemes because need very well qualified CryptoCoders, possibility of wrong implementations are
High.

http://www.adastral.ucl.ac.uk/~helger/crypto/link/coding_theory/

Crypto++ - is a collection of cryptographic schemes, and is preferred especially on MFC
Applications (this is a my obervation based on experience) especially when is required AES or RSA
Protection.

OpenSSL- is fundamentally designed to provide a commercial-grade, full-featured tookit for
SSL/TLS, this library is not used for Product Key Attivation, but is really intersting from the
Reverser / Security Researcher poit of view because, the major part of High Confidental Software
(such as for Trusted Networking) implements OpenSSL.

Windows CryptoAPI – Are really flexible and powerful they can find application in a big variety
of security tasks, such as managing certificates, and developing customizable public key
infrastructures. Certificate and smart card enrollment, certificate management, and custom module
developmen. This set of APIs is a bit different from the others because they are based on CSP
(Crypto Service Provider)
Reversing Targets which implements CryptoApi is a bit more complex due to the different
organization and diversification, indeed we can encounter there sub-services:

● CryptoAPI Tools - code signing, signature verification
● CSPs - Cryptographic Service Providers (CSP) that contain implementations of

cryptographic standards and algorithms.
● CAPICOM - Authenticode digital signatures, file-based credentials, certificates

management, support for AES
● WinTrust – Is based essentially on a multi purpose functionWinVerifyTrust() that

performs a Trust Verification by calling a Trust Provider.

NET Framework cryptography - The .NET Framework provides implementations of many
standard cryptographic algorithms. These algorithms are easy to use and have the safest possible
default properties. In addition, the .NET Framework cryptography model of object inheritance,
stream design, and configuration are extremely extensible. Accomplished tasks are the same of
CryptoApis, Secret-key encryption, PK, Signing, Hashing.

First Step – Library Identification

The first fundamental step for a CryptoReverser is to identify the library used. So we have to
disassemble the target and if not packed the first check can be done on Strings.Now we will see
some common sign that can help to recognize the previously seen libraries

Let's suppose that we don't have any IDA Signature..

MIRACL: This library could be easly recognized, due to the fact thas a direct management of
BigNums, stored in a struct of that kind:

1)
typedef struct {
int Size;
char bytes[24]; } big_num;

So in Asm we have the following situation

push 0
call _mirvar
mov dword ptr ds:[414B70],eax

So by watching the stack we can find the following corrispondences

● +04h Absolute Address of the BigNum
● +0Ch Absolute Value of The BigNum Stored in Little Endian format

2)

The second best known and used method to search about the

mov dword ptr [esi+eax*4+20], 17h

where the 17h, is a function identifier. Black_Eye already compiled a list of Indexes that can be
downloaded here http://beatrix2004.free.fr/pamplemousse/magic.table.txt

3)
IDA Signatures -> http://149.156.124.1/~cauchy//get.php?id=1

Crypto++: By analysing String table of Crypto++ is easy to confuse Crypto++ with Win
CryptoApi, cause the usual presence of CryptoAcquireContext() and CryptoReleaseContext().
Singular Crypto++ functions are easy to detect, just take a look here:

?AVException@CryptoPP@@
 unicode 0, <BYTE iv[CryptoPP::AES::BLOCKSIZE] =>

It's clear that @CryptoPP@@ stands for Crypto++

Win32 OpenSSL: Also this library is easy to detect, from Import Section search about
LIBEAY32, and OPENSSL_add_all_algorithms_noconf

Widowds CryptoAPI: As previously said CryptoApi are based on Services Providers, so in every
case they needs to acquire the relative context, to do this is called CryptoAcquireContext().

NET Framework cryptography: Just matter of Reflector, the rest is clear :)

Basical Most Common Implementations

Today the 90% of Product Key Activation Schemes are based upon the following algorithms

● RSA
● BlowFish
● ElGamal

http://149.156.124.1/~cauchy//get.php?id=1

Fast RSA

The first and most famous Key Validation is RSA, used for classical SerialNumber activation and
also on Keyfile Protections.

RSA is a public_key_cipher borned at M.I.T. on 1978 thank to the collaboration between Ron
Rivest, Adi Shamir e Les Andleman. This is an asymmetric cryptosystem which bases is "power"
on a series of features that the prime numbers had.

Due to the fact that RSA is an Asymmetric one we have Public and Private Parameters, and
SerialNumber activation is accomplished essentially in 3 steps:

● Generate an RSA Key Pair
● Export the Private Key (the checker)
● Import the Public Key (who needs to be validated)

First reverser's task is to know/enstabish parameters that are public and/or private, here a list of
them

N = P * Q
N -> Public
P,Q -> Private

O(n)=(p-1)*(q-1) -> Not Known

e = O(n) -> (Not know)

d -> Decrypt key (Known)

At this table we also add X (the plaintext) and Y (the ciphertext). Now we are into the heart of the
algorithm!, the famous:

C=M^e mod n
Where M is the Message to crypt and C is the Crypted message. I think that you are all able to
obtain the inverse formula, but to be complet:

M=C^d mod n

Usually in reversing we are in that situation:

● We know the correct but crypted serial, in other words we know C
● We know the modulus N, that was used to crypt our serial.
● We know E (with E and P,Q we can found D).

There is a tool around here, explicitly done for reversers, is RsaTool2 of The Egoiste TMG, that is
able to factorize N, to obtain P and Q. Next is matter of Mdular math, usually I implement little C
programs with MIRACL libs to do that task.

How to recognize RSA

RSA could be implemented in various ways also without libraries because as you've seen is easy,
but into Commercial Apps, MIRACL and Crypto++ are the most used.

RSA Pointers

Crackmes
Lockless 3 Crackme
http://crackmes.de/users/amenesia/basis2_rsa___wiener/
http://crackmes.de/users/eod/ninja_crackme_by_bart__xtreeme/
http://crackmes.de/users/thigo/tmg_official_keygenme_2/
http://crackmes.de/users/tsc/rsa_me/
http://crackmes.de/users/thigo/thigocrkme/

Papers
http://reteam.org/papers/e74.pdf
http://www.codeproject.com/KB/security/ProductActivation.aspx

Fast Blowfish

Blowfish is a cipher based on blocks and uses also a secret-simmetric key (so there is only a key,
used both for encryption and decryption. Blowfish is based also on a Feistel-Network, for people
that do not know what a Feistel, iterates a specific function a pre choised number of times, usually
16. Blowfish has also two fundamental elements, S-Boxes and P-Boxes, that are arrays of Constant
values.

Many times, into protection schemes, to recognize some famous algorithm, it's used to check for
some constant values (for example in MDx, TEA, Ghost, etc.). Into Blowfish we have some starting
values, for is P-array:

0x243F6A88L

and for S-box1 the first element is:

0xD1310BA6L

Could happen, that some Programs implements Modified versions of that algo. So tools like PEId or
RDG could fail the detection, so pay attention!!

Architecture of Blowfish, could be easly resumed in 3 functions:

● Blowfish_Initialization() for Expansion Step (or initialization function, this is the most
complex phase)

● Blowfish_encrypt()
● Blowfish_decrypt()

Blowfish functions have all the Context parameter, a struct of that kind:

http://www.codeproject.com/KB/security/ProductActivation.aspx
http://reteam.org/papers/e74.pdf
http://crackmes.de/users/thigo/thigocrkme/
http://crackmes.de/users/tsc/rsa_me/
http://crackmes.de/users/thigo/tmg_official_keygenme_2/
http://crackmes.de/users/eod/ninja_crackme_by_bart__xtreeme/
http://crackmes.de/users/amenesia/basis2_rsa___wiener/

typedef struct {

unsigned long P[16 + 2];

unsigned long S[4][256]; } BLOWFISH_CTX;

Used for S-Boxes and P-Boxes.

1)
Blowfish_Init(&blowfishctx, &szSetKey, 0x1f);

szSetKey is the key to expand, and 0x1f his lenght

2)

Now Encryption could be called : Blowfish_Encrypt(&blowfishctx, &dtA, &dtB);

&dtA and &dtB can composes our P-Boxesand obviously comes from the Expansion Step.

3)

Blowfish_Decrypt(BLOWFISH_CTX *ctx, unsigned long *xl, unsigned long *xr)

Last stage is the Decryption, as the encryption function takes as input CTX, DataL and DataR, and
as return value we have DataL and DataR decrypted.

In the totality of cases, Product Validation Schemes, uses the Init Function and the Encrypt, so
reverser work in this case is easy, he just have to implement a decryption function and needs to
know the key (usually sniffed from memory).
Not very frequently, program inverts the functions, so program implements Init and Decrypt, and
Reverser need the Encryption one. I've said this to let you pay attention on functions that you really
have.

The worst case that you can see is the Modified Blowfish, in other words protection schemes does
not implements the canonic blowfish, but a version changed in some aspect. Usually the
modifications that you'll meet are not many, here the most common: :

● Altered number of Feistel rounds (commonly is 32)
● S-boxes have different strating values, this is also an anti-detect system for automated

recognizing software
● F function is modified and frequently returns S[2][d]-S[1][b])^(S[0][c]+S[3][a]

My hint for code developers is to NOT implement any form of Blowfish.

Blowfish Pointers

Crackmes

Raskcrackme

http://www.crackmes.de/users/silver/silvers_dx_crackme_1/
http://www.crackmes.de/users/adjiang/keygenmemd5tean_blowfishcrc32_boom/
http://www.crackmes.de/users/blowfish/blowfish_crackme1/
http://www.crackmes.de/users/blowfish/blowfish_crackme2/

Papers

http://www.reteam.org/papers/e75.pdf
http://www.schneier.com/paper-blowfish-fse.html
http://tripteam.free.fr/files/Blowfish.pdf

Fast ElGamal

ElGamal is Public Key Algorithm, and is an asymmetric one, that bases is power on DL (Discrete
Logarithm problem).

The algorithm could be resumed in the following steps:

● Domain Parameter Generation
● Key Generation
● Encryption
● Decryption

Domain parameters are two, p (large prime number) and g (generator that comes form GF(p))

Key Generation depends on d(p,g)

● x Randomly generated
● y = g^x MOD p

y is the public key, x is the secret key.

Signing of message M (call is Encryption)

● Randomly generated k
● a=g^k Mod p
● b= (M- x * a) * k(-1) (mod p - 1) (M is our message)
● a and b are the Signatures of M

Essentially ElGamal is a great choise for Product Key Protection, exist some truly well coded
examples of that, for example SecureCRT. Security and efficiency of ElGamal Schemes is based on
the Discrete Logarithm Problem.

Attack Strategy

As should be clear, the first (and unique) strategy to attack DLP, is the determination of unknown
parameters, in particular the Secret Key x

y= g^x Mod p

http://tripteam.free.fr/files/Blowfish.pdf
http://www.schneier.com/paper-blowfish-fse.html
http://www.reteam.org/papers/e75.pdf
http://www.crackmes.de/users/blowfish/blowfish_crackme2/
http://www.crackmes.de/users/blowfish/blowfish_crackme1/
http://www.crackmes.de/users/adjiang/keygenmemd5tean_blowfishcrc32_boom/
http://www.crackmes.de/users/silver/silvers_dx_crackme_1/

DLP can be breaked by using

● index calculus method
● collision search method

In the practice are used Pollard's rho or Pohlig-Hellman a bit more faster.

When we have the secret key, and no Memory Obfuscated Parameters, keygenning became a matter
of Math Reversing. Keygeneration attacks are accomplished with MIRACL lib.

ElGamal Pointers

Crackmes

http://crackmes.de/users/bublic/elgamal_keygenme_1/
http://crackmes.de/users/thigo/tmg_official_keygenme_3/

Papers

http://www.ccs.neu.edu/home/yiannis/papers/eg.ps
http://dictionary.zdnet.com/definition/El+Gamal+algorithm.html
http://en.wikipedia.org/wiki/ElGamal_encryption

http://en.wikipedia.org/wiki/ElGamal_encryption
http://dictionary.zdnet.com/definition/El+Gamal+algorithm.html
http://www.ccs.neu.edu/home/yiannis/papers/eg.ps
http://crackmes.de/users/thigo/tmg_official_keygenme_3/
http://crackmes.de/users/bublic/elgamal_keygenme_1/

