Reversing Reprise License Manager, by KANGALOOJ #'-
An enterprise-class license management that

made to be reversed easily. REpS rISE

OFTWARE

About this tutorial

After a quick review on Synkro tutorial on RLM reversing that helps me a lot to
know RLM, | found some critical errors in Synkro’s tutorial like public key
length that he said is always 225 or 226, but it’'s wrong, my research on RLM
shows that it can vary more widely (I reached 224 to 227). So | decided to write
another tutorial to crack RLM. Anyway | really want to say thanks to Synkro for
his tutorial on RLM.

Introduction to RLM

Wiki says: “The original FLEXIm development team moved on to develop the
Reprise License Manager (RLM) in 2006.”

RLM uses “Public key/Private key” strategy for licensing just like FLEXIm but
key pairs are longer than FLEXIm that introduce more security in licensing.
Don’t panic! It’s a joke! My experience with FLEXIm and RLM says that FLEXIm
was more complex to reverse in comparison with RLM.

After reading this tutorial, you will be able to crack any RLM protected app
which made until now.

v’ Here | teach you to reverse Win32 (x86) targets, but for x64 versions and
other platforms you can use this tutorial with small modifications.

What you need?

RLM Helper (ver. 2.0), that | created myself! This tool needed only if you want
to automate some works and nothing else needed if you use this amazing tool!

OllyDbg (I use ver. 2.01), for x86 executable, you can use IDA Pro for other PEs.
RLM SDK, to make rImsign.exe

Visual Studio 6.0 or 2003 or 2005 or 2008 or 2010 to compile RLM SDK!

How to Crack?

There is two ways to crack RLM target:

Ultra Easy Way:

Using RLM Helper v2.0, crack procedure is so easy:

Note: You don’t need OllyDbg/IDA, RLM SDK and Visual Studio in this way!
1) Scan target directory with RLM helper to find files which must be patched!
2) Analyze all founded files to extract needed info!

3) Hit “Patch & Make rImsign.exe” button and enjoy!

Another Way:
Using OllyDbg, RLM SDK, and Visual Studio!

RLM Public Keys always starts with “3e-81-22-02-46" or “30-81-2?-02-41"1

Open target in OllyDbg and find occurrences of hex string “3e-81-22-02-4¢” or
“30-81-22-02-41", “2?” is depended on Public Key length. You can find public key
length by adding 3 to “2>?”! For example public key length of “3e-81-bp-02-46-.” is

OxDD+3 = 224!

You will find two or three public keys in the target, which last one is ISV’s
public key and others are for RLM internal use, so don’t patch them at all.

Now open visual studio console and switch to RLM SDK directory and then
make some preliminary apps like rimgenkeys.exe by command “nmake”! Now
you can make key-pairs using rimgenkeys.exe!

You must make a key-pair that it’s public key length matches target public key,
so you may need to run rlmgenkeys.exe several times to reach desired public
key length.

After producing appropriate key pair, patch ISV public key in the target (last
occurrence of public key in target).

You must find ISV name from target and LICENSE_TO_RUN string from target!
You can do it using OllyDbg, load target in OllyDbg and search for all
referenced strings in target. Then search for string ‘sig="’" and you will find two
or three occurrences of this string, one of them is like XML strings <...sig=".."..>
and other one is something like:

platforms="x86_w x64_| x64_w hp64_h ibm64_a" options="activation" sig="c2N25....."”

This is LICENSE_TO_RUN string of ISV, copy it to “license_to_run.h” file located
in “src” folder of RLM SDK, and modify line
with LICENSE_TO_RUN string you found before! But remember to scape
quotation marks with “\”! Here is an example of modified one:

#define RLM_LICENSE_TO_RUN “platforms=\"x86_w x64_| x64_w hp64_h ibm64_a\" \
options=\"activation\" sig=\"c2N25.....\"””

Just before LICENSE_TO_RUN string in target, you can find ISV name:

Address |Hex dump [AsSCIIT
28188130 /S 6E 64 BR BH V8 BB BB 25 73 VY VO 30 7S 08 V8| undd s Bn
PO1SE140|30 S8 80 B0 52 65 70 72 €9 72 65 80 SC 25 73 00| 8X Reprise “is
PA1S8B1S8| 64 65 6D 6F B0 90 9O 9B 20 20 78 6C 61 74 66 6F| demo platfo
BA13B160 |72 6D 73 3D 22 78 38 36 SF 77 28 78 36 34 SF 6C| rms=""u86_w x64_1
B013B170/ 20 78 36 34 SF 77 20 68 70 36 34 SF 68 20 69 62 #64_w hpéd_h ib
00188180 6D 36 34 SF 61 22 20 20 20 6F 708 74 69 6F 6E 73 mé4_a" options
00188198 /3D 22 61 63 74 69 76 61 74 69 6F 6E 22 20 20 20 ="activation”
0018B1AB 73 69 67 3D 22 63 32 4E 32 35 35 6A 4B SO 4C 2B sig=""c2N2SSjKPL+
©015B1BG 59 41 21 38 58 47 52 69 4E 69 48 44 6B 70 59| YALSJPGRiNiHDkpY
BA1SB1CO 7A 4R 49 65 53 30 69 67 48 78 65 54 7A 4A 42 SA 2J1eSOigHpeTzJBZ
PA12E100 74 73 4C 44 79 7E 66 56 52 67 43 37 48 36 55 77 tsLDy" fURQC7VHEUW
B01SB1EG|2A 4C 67 22 00 00 OO 00 B@ BB 68 6F 73 74 69 64 #Lg” host id

Here you can see ISV name “demo” in red color just before LICENSE_TO_RUN!

Modify #define RLM_ISV_NAME "demo" line in “license_to_run.h” file to
match your target ISV name.

Now edit “makefile” in main SDK folder and change line “ISV = demo” with
your target ISV name!

Run “nmake” in Visual Studio console and make SDK with new ISV name and
RLM_LICENSE_TO_RUN string.

Now you can sign your license with rimsign.exe produced with nmake!

Enjoy!

