
A Refined Decompiler to Generate C Code with
High Readability

Gengbiao Chen†, Zhuo Wang†, Ruoyu Zhang†, Kan Zhou†, Shiqiu Huang†, Kangqi Ni†, Zhengwei Qi†, Kai Chen‡, Haibing Guan‡
† School of Software

‡ School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University

{ kawar†, horreaper†, holmeszry†, zhoukan†, hsqfire†, vincent.nkq†, qizhwei†, kchen‡, hbguan‡ } @ sjtu.edu.cn

Abstract—As a key part of reverse engineering, decompilation
plays a very important role in software security and maintenance.
Unfortunately, most existing decompilation tools suffer from
the low accuracy in identifying variables, functions and com-
posite structures, which results in poor readability. To address
these limitations, we present a practical decompiler called C-
Decompiler for Windows C programs that (1) uses a shadow
stack to perform refined data flow analysis, and (2) adopts inter-
basic-block register propagation to reduce redundant variables.
Our experimental results illustrate that on average C-Decompiler
has the highest total percentage reduction of 55.91%, lowest
variable expansion rate of 55.79% in the three tools, and the
same Cyclomatic Complexity as the original source code for each
test application. Furthermore, in our experiment, C-Decompiler
is able to recognize functions with lower false positive and false
negative rate. In the studies, we show that C-Decompiler is a
practical tool to produce highly readable C code.

Keywords-Reverse Engineering, Decompilation;

I. INTRODUCTION
Source code is very valuable, especially as most of the

commodity software will not provide it. Gaining information
from the binary code is difficult, while it can be applied easily
with the source code. Decompiling the binary code into the
source code has drawn much attention in the last two decades
[9].
There are already several existing decompilers which can

transfer the binary code into the high level source code, such as
IDA Hex rays [2], Boomerang [1] and dcc [5]. Unfortunately,
all of these systems suffer from the low identification accuracy
of variables, functions, and types in different aspects.
Type information recovery [4] is a great challenge in recent

researches. K. Dolgova [8] presented a type reconstruction
algorithm for assembly code, which recovers the primitive
types with lattice theory and reconstructs the composite types
by building a set of accessible offsets.
Flow Graph building is another key point in the decompi-

lation field. In [7], Cristina Cifuentes presents a flow graph
structuring algorithm by using a set of generic high-level
language structures such as loops and conditionals. Another
inter-procedural data flow analysis method is described in [6].
In this paper, we present a practical decompiler called C-

Decompiler for Windows programs with special emphasis on
high readability and make two contributions:

• Shadow stack based behavior analysis
In order to construct the layout of the function calls and
gain more refined information about the variables, C-
Decompiler adopts a shadow stack mechanism to track
the behaviors of the application’s stack.

• Inter-basic-block data flow analysis
We present a new inter-basic-block data flow analysis to
find out the relationship of variables among basic blocks,
which is useful to eliminate redundant variables.

The rest of the paper is organized as follows. Section 2
describes the techniques implemented in C-Decompiler in
details. In Section 3, we show the evaluation with the compar-
isons to IDA Hex rays and Boomerang. Finally we conclude
in Section 4.

II. TECHNIQUE DESCRIPTION

This section presents a detailed description of our key
techniques. The first one is the shadow stack mechanism
introduced by Stack Monitor. The second one is inter-basic-
block register propagation in Data Flow Analysis Engine.

A. Shadow Stack
The analysis of the stack [3] is a key method to identify

parameters and local variables. Cristina Cifuentes [5] proposed
the classic algorithm of identifying parameters and local
variables. The algorithm neglects operations on the stack (eg.,
changing the stack pointer esp), which can lead to wrong data
flow analysis results.
In Figure 1, an example is given to show how the classic

algorithm identifies parameters and local variables. Several
mistakes are made in its data flow analysis. For example, two
parameters and one local variable are recognized, but there are
actually one parameter and two local variables. Furthermore,
according to this algorithm, the value of ecx in line 12 comes
from line 7, but this value should be assigned from the stack
in line 9.
In order to solve the problem above, a shadow stack is

introduced in our design. VirtualESP (Figure 2) is declared
to represent the offset between esp func and the current value
of esp. esp func stands for the value of esp at the entry of
each function. Two sets of instructions are concerned, one
of which changes the value of esp, and the other reads or

2010 17th Working Conference on Reverse Engineering

1095-1350/10 $26.00 © 2010 IEEE

DOI 10.1109/WCRE.2010.24

150

Fig. 1. An example of how the classic algorithm works. The memory
locations with green mark are parameters, and blue for local variables. The
red arrowed curve is the propagation path of ecx according to the classic
algorithm, while the green curve is the correct path.

writes the stack. For the first set of instructions, the value
of VirtualESP is modified according to how the instruction
influences the stack. For example, after the first instruction sub
esp, 0x30, VirtualESP is decreased by 0x30. For the second
one, we decide what the memory location actually represents,
a parameter or a local variable, by adding VirtualESP to it. For
instance, in line 6 of Figure 2, VirtualESP is −0x3C, and the
memory location used in the destination operand is updated
by esp func + 0x24 − 0x3C = esp func − 0x18. Thus in
line 6 the value of ebx is assigned to a local variable, because
its address (esp func− 0x18) is below the stack base.

Fig. 2. With the help of the shadow stack, we can see that line 6 and line
12 write to the same memory location. Totally one parameter and two local
variables are identified. Moreover, the correct data path of ecx is recognized.

Figure 2 shows how we handle the previous example. With
the help of the shadow stack, we recognize the local variables,
parameters, and propagation paths correctly.

B. Inter-basic-block register propagation

With the help of removal of temporary registers, expres-
sions close to high-level language will be formed with the
reconstructed information that is lost during the compilation.
The intra-basic-blocks register propagation has already been
proposed in the previous work [5], which results in the
incomplete propagation.
The traditional dcc register propagation [5] is described in

Figure 3. In this algorithm, CanDoPropagate() is to judge
whether the rhs-clear condition propagates the register. The
rhs-clear path is an x-clear path from the identifiers x in an

expression that defines a register r that satisfies ud-chain (use-
define chain) condition to the instruction that uses the register
r [5]. If there is no other definition of x along the path, x-clear
turns out to be true here. And DoPropagate() is to execute the
register propagation.

�������	
�����
�������������������

Fig. 3. Algorithm: intra-basic-blocks register propagation [5].

This method limits the register propagation only inside the
BB (Basic Block). This shortcoming results from the execution
of register propagation in the phase of data flow analysis. At
that moment relationships of BBs cannot be acquired, since
the control flow analysis has not been performed yet. Thus
the propagation is restricted inside the BB.
Due to the difficulty of identifying the ud-chain, it is

challenging to implement the register propagation across BBs.
First, the execution path is nondeterministic. Second, the ud-
chain of one instruction may come from different BBs. To
address this problem, Instruction path is introduced in our
work.
Instruction path is the sequential instructions executed in

order. Instruction path has several entries along this path, but
only one exit, in contrast to basic block which has one entry
and one exit.
Our new inter-BB register propagation is listed in Fig-

ure 4. Compared to the traditional algorithm, ours has
three improvements, ConstructPath(), ComputeUD(), and Can-
DoAcrossBB(). CanDoPropagate() and DoPropagate() realize
the same function with the traditional algorithm. In Construct-
Path(), the instructions in the loop are added only once and
all the paths are constructed from the first instruction to all
the ret instructions if a program has multiple ret instructions.
To be practical, only the instruction paths related to the
decompilation are constructed and saved. Each instruction may
appear in different ud-chains because each instruction has a
possibility in different instruction paths.
An example is presented in Figure 5. The inter-BB method

reconstructs the code with high accuracy and readability. The
variables loc0, loc1, loc2 from dcc are actually related
to loc0 in our result with both accurate and clear information
about the relationship of the variables. The inter-BB method
consumes a lot of time and space to construct and store the
instruction paths, while it is quite acceptable to take only 2.94
seconds to decompile Microsoft notepad.exe with the binary

151

�������	
��

�������	
�����������
�������������������

Fig. 4. Algorithm: inter-basic-blocks register propagation.

�	����������
����� �����	
��
�������������

Fig. 5. The comparison of the decompiled results from dcc and C-
Decompiler. This is mainly to illuminate the difference between the traditional
method and the inter-BB method.

code size of 67K.

III. EXPERIMENTAL RESULTS

This section presents a series of programs decompiled by
C-Decompiler. These programs illustrate different aspects of
the decompilation process. The comparisons among the orig-
inal source code and the code decompiled by C-Decompiler,
Boomerang [1], and Hex rays [2] (the decompilation plugin
of the famous disassembler IDA Pro), are provided.
We use four evaluation criteria in our experiments. The first

is function analysis, which evaluates the quality of identifying
functions. All functions are divided into 2 types, UDF (user
defined functions) and A&L (API and library functions). We
list the quantity of UDF and A&L for each test program,
and compute fp% (false positive) and fn% (false negative).
Second, expansion% (variable expansion rate) reflects how
many additional variables are used in the decompiled code,
compared with the original code. Third, reduction% [5] de-
picts the reduction percentage of code lines when the program
is represented by high level language such as C/C++ instead

Fig. 6. The original and decompiled code of the case study. (a) is the
original code, and (b) is the code decompiled by C-Decompiler. Only the
main functions are listed, and some parameters of functions are omitted. C-
Decompiler recognizes all functions and variables.

of assembly code. Fourth, CC (Cyclomatic Complexity)1 is a
software metric developed by Thomas J Mcbabe. It directly
measures the number of linearly independent paths through a
program’s source code.
This section is divided into 4 parts. At first the benchmark

programs are introduced. Then a case study is presented. In the
third part, the decompiled results of the programs are provided.
In the last part, we focus on the efficiency of the decompilers.
The experiment data are collected on the platform with the
configuration listed in Table I. Furthermore, most of the code
decompiled by C-Decompiler can be directly compiled, and
the generated executables have the same functions as the
original ones.

CPU intel Core2 3.00GHz
Memory DDR2 3GB
Disk Seagate SATA 1TB

Compiler Visual C++ 2008
OS Windows XP SP3

TABLE I
THE EXPERIMENT TESTBED.

A. Benchmark Programs
Our benchmark suite consists of 7 programs, which are

listed in Table II. These programs evaluate decompilation
quality in various aspects. The LOC (lines of code) of these
programs are ranging from 23 to 3349.

B. Case study
We perform this case study on Win32.exe, whose source

code is automatically generated by Visual Studio 2008 when
we start up a new Windows project. Its LOC is 191.
Figure 6 lists the original and decompiled code. The decom-

piled code from IDA Hex rays and Boomerang is omitted, but
their results are shown in Table III.

1http://en.wikipedia.org/wiki/Cyclomatic complexity

152

TABLE II
Evaluation Programs

Programs Source LOC Description
hallint Plum-hall benchmark 34 A computation-intensive program to evaluate the ability to decompile operators.
fibo A math algorithm 124 A function call intensive program. It calculates Fibonacci numbers by a recursive algorithm.

Win32 Generated by Visual Studio 205 An A&L intensive program. This program creates an empty window with Windows APIs.
Notepad Windows XP - A comprehensive test for decompilers. It is one of the most popular tools under Windows.
specrand SPECINT 2006 benchmark 77 The benchmark generates a sequence of pseudorandom numbers starting with a known seed.
MatrixMul A math algorithm 23 This program multiples two matrixes, which are represented by 2 two-dimension arrays.
TextEditor An open source tool 3349 TextEditor is a real world word processor, and is taken as a comprehensive test for decompilers.

Fig. 7. Function-call trees of the code decompiled. (a), (b), (c) and (d)
are the function-call trees of the original code, C-Decompiler, Hex rays, and
Boomerang, respectively. The nodes are functions. The green nodes represent
APIs, and the blue ones stand for UDF.

The number of EL (effective lines) in the code decompiled
by C-Decompiler, IDA Hex rays and Boomerang is 121, 1026,
455, respectively. The reduction% of the 3 decompilers are
65.30%, -368.54%, and -30.40%, respectively. The CC of the
original code and the result of C-Decompiler are both 11,
while the CC for Hex rays and Boomerang are 30 and 27,
respectively.

1) Function analysis: In this section, we discuss the iden-
tification accuracy of functions. Totally, there are 4 UDF and
17 A&L in the original code. C-Decompiler identifies 4 UDF,
as the same number as the original code. Our tool confirms
17 A&L, all of which are correctly identified (CI). The false
positive rate (fp%) and false negative rate (fn%) are both
0%. Zero UDF and 31 A&L are reported by IDA Hex rays,
whose fp% is as high as 45.16%. Boomerang cannot identify

all the A&L, and its fn% is 70.59%. These statistics are listed
in Table III.
Figure 7 shows the function-call tree of the original code

and decompiled code. The function-call tree represents the
relationship of the functions. It is obvious that the tree of the
decompiled code produced by C-Decompiler is most close to
the one of the original code. The only difference between the
two trees is the child nodes’ sequence of node 3. The reason
is that there is a switch-case structure in the code segment
of the UDF substituted by node 3. The change of the child
nodes’ position has no effect on the execution of the program.
The trees of IDA Hex rays and Boomerang are quite different
from the one of original code. This means the constructions of
decompiled code produced by IDA Hex rays and Boomerang
are quite different from original code.

2) Variable analysis: There are total 11 variables declared
in the original code. Three of all the 11 variables are global
ones. C-Decompiler recognizes 21 variables, four of which are
global. The expansion% of C-Decompiler is 81.82%. IDA
Hex rays declared the most variables, and the expansion%

is 563.64%. The rate of the code decompiled by Boomerang
is 181.82%. All the statistics are listed in Table III. In all the 3
decompilers, C-Decompiler uses least variables, which makes
its results easy to understand.

C. Decompilation results
This section provides the statistics of decompiled results

from benchmark programs. The results of Boomerang are
incomplete because it cannot generate results for Windows
application notepad.exe and TextEditor.exe. We do not perform
analysis on notepad.exe because its source code is inaccessi-
ble. C-Decompiler recognizes all 7 operators in hallint.exe and
all recursive functions in Fibo.exe. The decompilation statistics
of specrand and TextEditor are listed in Table IV and Table
V, respectively.
Figure 8 shows the overall reduction% of the 3 decompil-

ers. Figure 9 shows the overall variable expansion rate. From
the two figures we conclude that on average C-Decompiler
has the highest reduction rate and lowest expansion rate, which
means that it produces the fewest redundant variables and code
lines.

D. Decompilation Efficiency
Figure 10 shows the performance of the decompilers. C-

Decompiler needs approximate 2.94 seconds to decompile
notepad.exe. In the experiments, C-Decompiler performs the

153

TABLE III
Statistics of the case study

Code Origin UDF A&L CI A&L fp% fn% variables expansion% EL reduction% CC
source 4 17 - - - 11 - 349 - 11

C-Decompiler 4 17 17/17 0% 0% 20 81.82% 121 65.30% 11
IDA Hex rays 12 31 17/17 45.16% 0% 73 563.64% 417 -368.54% 30
Boomerang 7 8 5/17 37.50% 70.59% 31 181.82% 455 -30.40% 27

��� ���

��������

��������

�����

�������

	
��
��

���
������

����

���

��������

��������

��������

��������

��������

�����

�������

	
��
��

���
������

����

���

Fig. 8. Summary of reduction rate of the 3 decompilers. The red, green
and blue bars stand for the reduction% of C-Decompiler, Boomerang,
and Hex rays, respectively. The higher bars mean the better performance.
Generally speaking, the red bar is the highest, which means the length of
the code decompiled by C-Decompiler is closest to the length of the original
code.

� ���
�������
�������
�������
�������

��������
��������
��������
��������
��������

	
��
��

���
������

����

���
�����

�������
�������
�������
�������

��������
��������
��������
��������
��������

	
��
��

���
������

����

���

Fig. 9. Summary of variable expansion rate. The relationship of the colors
and the decompilers is the same to the Figure 8. The lower bars present
the better performance. Generally speaking, the red bar is the lowest. This
means the quantity of variables in the code decompiled by C-Decompiler is
the closest to the one of the original code.

lowest speed. However, efficiency is not a key feature for
a decompiler because programs need to be decompiled only
once.

IV. CONCLUSION

This paper presents C-Decompiler, an accurate decompiler
which can generate highly readable source code. First, a
shadow stack is implemented to gain more refined information
about the variables. Second, C-Decompiler is capable of

TABLE IV
Analysis results of specrand.exe

Code Origin UDF A&L CI A&L fp% fn% CC
Original Source 1 11 - - - 5
C-Decompiler 1 11 11/11 0% 0% 5
Hex rays 12 6 6/11 0% 45.5% 23
Boomerang 8 2 1/11 50.0% 92.6% 17

TABLE V
Analysis results of TextEditor.exe

Code Origin UDF A&L CI A&L fp% fn% CC
source 52 62 - - - 43

C-Decompiler 52 62 62/62 0% 0% 43
Hex rays 73 128 62/62 51.56% 0% 103

�����

�����

�����

�����

�����

�����

�����

����� 	
��
��

���
������

����

���

Fig. 10. The decompilation time for the three decompilers.

analyzing data dependency across basic blocks which greatly
reduces the redundant variables. It can also extract the switch
case structure, identify the arrays and increase the readability
of the decompiled source code greatly.

V. ACKNOWLEDGEMENT

This work is supported by National Natural Science Founda-
tion of China (Grant No.60773093, 60873209, and 60970107),
the Key Program for Basic Research of Shanghai (Grant
No.09JC1407900, 09510701600), IBM SUR Funding and
IBM Research-China JP Funding.

REFERENCES

[1] Boomerang. http://boomerang.sourceforge.net.
[2] IDA hex-rays. http://www.hex-rays.com/.
[3] C. W. Appel and A. P. Felty. A semantic model of types and machine

instuctions for proof-carrying code. In POPL, pages 243–253, 2000.
[4] P. T. Breuer and J. P. Bowen. Decompilation: The enumeration of types

and grammars. ACM Trans. Program. Lang. Syst., 16(5):1613–1647,
1994.

[5] C. Cifuentes. Reverse Compilation Techniques. School of Computing
Science PhD thesis, Queensland University of Technology, 1994.

[6] C. Cifuentes. Interprocedural data flow decompilation. J. Prog. Lang.,
4(2):77–99, 1996.

[7] C. Cifuentes. Structuring decompiled graphs. In CC, pages 91–105, 1996.
[8] K. Dolgova and A. Chernov. Automatic type reconstruction in disassem-

bled c programs. In WCRE, pages 202–206. IEEE, 2008.
[9] M. Van Emmerik. Static Single Assignment for Decompilation. School

of ITEE PhD thesis, University of Queensland, 2007.

154

