
On deobfuscation

in practice

Vasily Bukasov

Dmitry Schelkunov



Obfuscation applications

• Software protection against 
computer piracy

• Malware protection against 
automatic detection and to 
impede analysis of a 
malicious code    



Obfuscators and protectors

• Manual obfuscation requires a lot 

of resources

• It’s much easier to use 

obfuscators and protectors which 

promise a strong obfuscation



Common code protection 

techniques

• Code encryption (out of 

scope of our report)

• Code virtualization

• Code morphing



Code virtualization

• Converts a source assembler 
code to the specially generated 
byte-code

• Inserts byte-code and byte-
code interpreter into the source 
PE file



Code virtualization

Byte-code mostly represents 

original assembler instructions 

so its execution has the same 

effect as from the original 

instructions



Code virtualization

Get instruction byte-code

Byte-code 

fetching

loop

Get instruction arguments from VM 

context or from another location

Process instruction

Save result into VM context or into 

another location



VM context

• Contains variables associated 
with processor registers

• Contains VM state

• Its location can be easily found in 
most cases



VM context location

• Dynamically allocated memory 

(VirtualAlloc, HeapAlloc)

• Global memory (access via 

spinlock)

• Stack



VM stack context layout

Stack of the 

protected code

Reserved area

VM context rSP

0
Not initialized



«Virtualized» addition
void unoptimal_addition( int a, int b, int *p )

{

int u, v, t, *r;

u = a; 

v = b;

r = p;

t = u + v;

*r = t;

}



Virtualized code execution

Getting byte-code

Loading from VM context

Instruction execution

Saving to VM context 

Getting byte-code

Loading from VM context

Instruction execution

Saving to VM context 

This code is 

asking to be 

optimized 

etc…



Code devirtualization

• We can locate VM context

• We can get CFG in most cases

• We can use common code 

optimization algorithms to 

deobfuscate a virtualized code



Code morphing

• Used to increase resistance to 

the static analysis

• Used for the CFG obfuscation

• Used to increase VM body 

analyzing complexity  



Code morphing and CFG 

obfuscation

Therefore protectors don’t even 

try to do it 

It’s a difficult task to decompile 

a machine code



Code morphing and CFG 

obfuscation
Data dependencies analysis is 

weak in protectors

Therefore they are limited in 

choice of obfuscation techniques



Code morphing common 

techniques

Recursive templates

Instruction

Instruction

Instruction

…

Instruction

TemplateTemplate

Template

Template



Code morphing common 

techniques

• Dead code insertion

• Garbage code insertion

• Opaque predicates

• Jump address calculation

• Code cloning 



Morphed code deobfuscation

• Decompilation into IR

• IR instruction emulation

• Collecting variables values

• Emulation-based deobfuscation
techniques



Ariadne engine

• An engine for RE

• Can be used as IDA plugin

• Enables PE format analyzing, 
disassembling and modifying

• Supports GP, FPU, MMX, SSE, 
SSE2, SSE3, SSSE3, SSE4.1, 
SSE4.2, SSE4a, VMX, SMX



Ariadne engine
• Supports assembler instructions 

translation into Ariadne
Intermediate Representation 
(AIR)

• Supports IR instructions 
emulation

• Contains emulator-based code 
tracing mechanisms



Ariadne engine

• Contains built-in trace 

deobfuscation (AIR Wave 

Deobfuscation Technology)



AIR Wave Deobfuscation 

Technology

• Static deobfuscation

–based on the classical compiler 

theory approaches

–doesn’t use emulation



AIR Wave Deobfuscation 

Technology
• Dynamic deobfuscation

–uses Ariadne IR emulator

–calculates values of variables

–determines in a lot of cases where a 
pointer points to

–used for dereferenced pointers 
deobfuscation



AIR Wave Deobfuscation 

Technology

• Deobfuscation techniques

–dead code elimination

–variables propagation

–constant folding

–math simplifications



AIR Wave Deobfuscation 

Technology

• Deobfuscation techniques

–loop unrolling

–common subexpression
elimination

–pointer analysis and alias 
classification



Our results

• Many obfuscators/protectors 

provide a weak obfuscation

• Ariadne engine can be 

effectively used for 

deobfuscation



AIR Wave Deobfuscation 

Technology

Tested on …

See it for yourself 



And our thanks go…

• To Rolf Rolles for his works 

about virtualization 

obfuscation unpacking

• To Leta Group for Ariadne

sponsorship



Ariadne engine

http://ariadne.group-ib.ru

http://ariadne.group-ib.ru/
http://ariadne.group-ib.ru/
http://ariadne.group-ib.ru/

